Determining Detonation Velocity for O₃ assuming O₂ and O as products

Unknowns: u1, u2, T2, P2, X0,2, X02,2 (6 unknowns)

Equations:

$$\rho_1 u_1 = \rho_2 u_2$$

$$P_1 + \rho_1 u_1^2 = P_2 + \rho_2 u_2^2$$

$$h_1 + \frac{1}{2}u_1^2 = h_2 + \frac{1}{2}u_2^2$$

$$P_2 = \rho_2 \frac{R_u}{M_2} T_2$$

$$M_2 = 32X_{O_2,2} + 16X_{O,2}$$

$$K_p(T_2) = \frac{X_{\text{O}_2,2}}{X_{\text{O},2}^2} \frac{P_{\text{ref}}}{P_2}$$

Knowns: T₁, P₁, h₁, ρ₁

One possible iteration procedure:

Guess a value of T₂ and P₂ (choose reasonable values to assist convergence).

Calculate $K_P(T_2)$ - this doesn't change for a given T_2

Calculate mole fractions of O and O_2 from T_2 and P_2 and simple dissociation equation using K_P

Calculate M2, p2, h2

Combine continuity and momentum $u_1^2 = \frac{P_2 - P_1}{\rho_1 - \rho_1^2/\rho_2}$

 $u_1^2 = \frac{2(h_2 - h_1)}{1 - \rho_1^2/\rho_2^2}$

From energy and continuity equations

Iterate on P_2 at the chosen T_2 until these equations agree

Check IGL. Use as your objective function (which should be zero in the end): P_2 - $\rho_2R_2T_2$

Choose a new value of T_2 and guess P_2 , iterate again on P_2 until the two equations agree, then recheck your objective function. Iterpolate or extrapolate to get your next guess of T_2 .