Refereed Journal Publications

Emissivity of Aluminum Oxide Particle Clouds: Application to Pyrometry of Explosive Fireballs, Lynch, P.T., Krier, H., and Glumac, N.G., Journal of Thermophysics and Heat Transfer 2010 vol:24 iss:2 page:301 -308 ISSN:0887-8722

Gas-phase reaction in nano-aluminum combustion, Lynch, P.T., Fiore, G., Krier, H., and Glumac, N.G. Combustion Science and Technology, vol:182 iss:7 page:842 -857 ISSN:0010-2202

An Experimental Study of the Reaction of Aluminum and Water in Underwater Shaped Charges, Randall, B., J. Felts, B. Fant, H. Krier, and N. Glumac, JANNAF Journal of Propulsion and Energetics, Vol. 3, p. 21 (2010) Distribution restricted.

Energy Deposition Applied to a Transverse Jet in a Supersonic Crossflow Lazar E, Elliott G, Glumac N AIAA Journal Volume: 48 Issue: 8 Pages: 1662-1672 Published: AUG 2010

NO and OH Spectroscopic Vibrational Temperature Measurements in a Postshock Relaxation Region Sharma M, Austin JM, Glumac NG, et al. AIAA Journal Volume: 48 Issue: 7 Pages: 1434-1443 Published: JUL 2010

Optical Depth Measurements of Fireballs from Aluminized High Explosives, Peuker, J. M., P. T. Lynch, N. Glumac, and H. Krier, Optics and Lasers in Engineering, 47:9, 1009-1015, 2009.

Absorption Spectroscopy Measurements in Optically Dense Explosive Fireballs Using a Modeless Broadband Dye Laser, Glumac, N., Applied Spectroscopy, 63:9, 1075-1080, 2009.

A correlation for burn time of aluminum particles in the transition regime, Lynch, P., Krier, H., and Glumac, N. Proceedings of the Combustion Institute, 32, 1887-1893, 2009.

Temperature Inhomogeneity during Multibubble Sonoluminescence, Xu, H., Glumac, N.G., and Suslick, K.S., Angewandte Chemie, 48, 1-5, 2009.

Control of the Shear Layer Abover a Supersonic Cavity using Energy Deposition, Lazar, E., G. Elliott, and N. Glumac, AIAA Journal, 46:12, 2987-2997, 2008.

Growth of Nanodiamond/Carbon-Nanotubes Composites Using Hot Filament Chemical Vapor Deposition, N. Shankar, N. G. Glumac, M-F Yu, and S. P. Vanka, Diamond and Related Materials 17:1, 79-83 (2008).

Evidence for the Transition from the Diffusion-Limit in Aluminum Particle Combustion, T. Bazyn, H. Krier, and N. Glumac, Proceedings of the Combustion Institute , 31, 2921-2028 (2007).

Decomposition of Aluminum Hydride under Solid Rocket Motor Conditions, T. Bazyn, N. Shankar, H. Krier, N. Glumac, X. Wang, and T. L. Jackson, Journal of Propulsion and Power, 232, 457-476 (2007).

Reflected shock Ignition and combustion of Aluminum and Nanocomposite Thermite Powders, T. Bazyn, N. Glumac, H. Krier, T. S. Ward, M. Schoenitz, and E. L. Dreizin, Combustion Science and Technology, 179, 457-476 (2007).

Emission Spectroscopy of Flame Fronts in Aluminum Suspensions, S. Goroshin, J. Mamen, A. Higgins, T. Bazyn, N. Glumac, H. Krier, Proceedings of the Combustion Institute , 31, 2011-2019 (2007).

The Effect of Ambient Pressure on Laser-Induced Plasmas in Air, N. Glumac and G. Elliott, Lasers and Optics in Engineering, 45, 27-35 (2007).

Synthesis of tungsten oxide (WO3) nanorods using carbon nanotubes as templates by hot filament chemical vapor deposition N. Shankar, M. F. Yu, S. P. Vanka, and N. G. Glumac, Materials Letters, 60,771-774 (2006).

Combustion of Nano-Aluminum at Elevated Pressure and Temperature Behind Reflected Shock Waves, Tim Bazyn, Herman Krier, and Nick Glumac Combustion and Flame 145 , 703–713, (2006).

Aluminum Nitride Emission from a Laser-Induced Plasma in a Dispersed Aerosol, N. Glumac, Journal of Applied Physics , 98, 053301, (2005)

Oxidizer and Pressure Effects on the Combustion of 10-micron Aluminum Particles, T. Bazyn, H. Krier, and N. Glumac, Journal of Propulsion and Power, 21, 577-582, (2005).

Temporal and Spatial Evolution of the Thermal Structure of a Laser Spark in Air, N. Glumac, G. Elliott, and M. Boguszko, AIAA Journal, 43, 1984-1994, (2005).

Hydrogen Synthesis via Combustion of Fuel-Rich Natural Gas/Air Mixtures at Elevated Pressure, B. Lemke, C. Roodhouse, N. Glumac, and H. Krier, International Journal of Hydrogen Energy, 30, 893-902, (2005).

OH Concentration Profiles over Alumina, Quartz, and Platinum Surfaces using Laser Induced Fluorescence Spectroscopy in Low-Pressure Hydrogen/Oxygen Flames, S. Prakash, N. Glumac, N. Shankar and M. Shannon, Combustion Science and Technology, 177, 793-817 (2005)

Temperature measurements of aluminum particles burning in carbon dioxide N. Glumac, H. Krier, T. Bazyn, and R. Eyer, Combustion Science and Technology, 177, 485 (2005)

Numerical study of mixed convection flow in an impinging jet CVD reactor for atmospheric pressure deposition of thin films, S. P. Vanka, G. Luo, N. G. Glumac, Journal of Heat Transfer – Transactions of the ASME, 126 764-775 (2004)

Fluid flow and transport processes in a large area atmospheric pressure stagnation flow CVD reactor for deposition of thin films, G. Luo, S. P. Vanka, and N. Glumac, International Journal of Heat and Mass Transfer, 47, 4979-4994 (2004).

Hydroxyl radical concentration measurements near the deposition substrate in low-pressure diamond-forming flames, S. Roy, J. DuBois, R. P. Lucht, and N. G. Glumac, Combustion and Flame, 138, 295-294 (2004).

Parametric effects on thin film growth and uniformity in an atmospheric pressure impinging jet CVD reactor S. P. Vanka, G. Luo, and N. Glumac, Journal of Crystal Growth, 267, 22-34 (2004).

Combustion characteristics of aluminum hydride at elevated pressure and temperature Tim Bazyn, Ryan Eyer, Herman Krier, and Nick Glumac, Journal of Propulsion and Power, 20, 427-431 (2004)

Laser-Induced-Fluorescence Detection of SnO in Low-Pressure Particle-Synthesis Flames, Steven Bailey and N. G. Glumac, Applied Physics B , 77, 455-461. (2003).

An Assessment of In-Person and Remotely Operated Laboratories, M. Ogot, G. Elliott, and N. G. Glumac, Journal of Engineering Education, 92, 10-15, (2003)

The Effects of Temperature Jump on CVD Modeling, Tailai Hu and N. Glumac, Chemical Vapor Deposition, 8, 205-212, (2002).

Investigation of Temperature Jump and Flame Structure in Low-Pressure Diamond-Forming Flames Using Hydrogen CARS Temperature Measurements, Sukesh Roy, Robert Lucht, Tailai Hu, and Nick Glumac, Combustion and Flame, 130, 261-276, (2002).

Control of Thin Film Growth in Chemical Vapor Deposition Manufacturing Systems: A Feasibility Study, Wilson K. S. Chiu, Yogesh Jalurian, Nick G. Glumac, Journal of Manufacturing Science and Engineering, 124, 715-724, (2002).

AlO Vibrational Temperature Measurements from Burning Aluminum Particles at Elevated Pressure, N. Glumac, J. Servaites, H. Krier, Combustion Science and Technology, 172, 95-106, (2001).

Molecular Filtered Rayleigh Scattering Applied to Combustion, G. Elliott, N. Glumac, and C. Carter, Measurement Science and Technology , 12, (2001), 452-466.

Destruction of NO During Catalytic Combustion on Platinum and Palladium, N. Khadiya and N. G. Glumac, Combustion Science and Technology, 165, (2001) 249-266.

Minimizing Aggregation Effects in Flame Synthesized Nanoparticles, A. Singhal, G. Skandan, N. Glumac, and B. H. Kear, Scripta Materiala, 44, (2001) 2203-2207.

Parametric Study of Zirconia Nanoparticle Synthesis in Low Pressure Flames, A. Colibaba-Evulet, V. Shukla, N. G. Glumac, B. Kear, and F. Cosandey, Scripta Materiala, 44, (2001) 2259-2262.

Catalytic Removal of NO from Post-flame Gases in Low Pressure Stagnation-Point Flames over Platinum, N. Khadiya and N. G. Glumac, Combustion and Flame 125, (2001) 931-941.

Formation and Destruction of SiO Radicals in Powder Synthesis Flames, N. G. Glumac, Combustion and Flame 124, (2001) 702-711.

Validation of Surface Chemistry Models using Low Pressure Stagnation-Point Flames: Measurements of OH above Platinum Surfaces, N. Khadiya and N. G. Glumac, Combustion Science and Technology, 159, (2000) 147-167.

Detection of AlO and TiO by Laser-Induced Fluorescence in Powder Synthesis Flames, A. Colibaba-Evulet, A. Singhal, and N. G. Glumac, Combustion Science and Technology , 157, (2000) 468-475.

Numerical Simulation of Chemical Vapor Deposition Processes Under Variable and Constant Property Approximations, W. K. S. Chiu, Y. Jaluria, and N. Glumac, Numerical Heat Transfer, Part A: Applications, 37, (2000) 113-132.

Nanopowder and Nanostructured Film Synthesis in Low Pressure Flames, N. G. Glumac, A. Colibaba-Evulet, B. H. Kear, and G. Skandan, Journal of Metastable and Nanocrystalline Materials, 8 (2000) 468-475.

A New Flame Process for Producing Nanopowders, G. S. Tompa, G. Skandan, N. Glumac, and B. Kear, Ceramic Bulletin , 78, (1999) 70-75.

Synthesis of Oxide Nanoparticles in Low Pressure Flames, G. Skandan, Y-J Chen, N. Glumac, and B. H. Kear, Nanostructured Materials, 11, (1999) 149-153.

Particle Size Control During Flat Flame Synthesis of Nanophase Oxide Powders, N. G. Glumac, G. Skandan, Y. J. Chen, and B. H. Kear, Nanostructured Materials, 12, (1999) 253-258.

Diagnostics and Modeling of Nanopowder Synthesis in Low Pressure Flames, N. G. Glumac, Y-J Chen, and G. Skandan, Journal of Materials Research, 13, (1998) 2572-2579.

Thermal Stability of Potassium Carbonate Near Its Melting Point, R. L. Lehman, N. Glumac, and J. S. Gentry, Thermochimica Acta, 316, (1998) 1-9.

On Nanoparticle Aggregation During Vapor Phase Synthesis, A. Singhal, G. Skandan, A. Wang, N. Glumac, B. Kear, and R. D. Hunt, Nanostructured Materials, 11, (1999) 545-552.

Building a Fiber-Optic Spectrograph, N. Glumac and J. Sivo, Sky and Telescope, 97, (1999) 134-139.

Low Pressure Flame Deposition of Nanostructured Oxide Films, G. Skandan, N. Glumac, Y-J Chen, F. Cosandey, E. Heims, and B. Kear, Journal of the American Ceramic Society, 81, (1999) 2753-2756.

Flame Emission Spectroscopy for Equivalence Ratio Monitoring, A. Sandrowitz, J. Cooke, and N. Glumac, Applied Spectroscopy, 52, (1998) 285.

High-rate Production of Non-agglomerated Nanopowders in Low Pressure Flames, N. G. Glumac, Y-J Chen, G. Skandan, and B. Kear, Materials Letters, 34, (1998) 148-153.

Flame Temperature Predictions and Comparison with Experiment in High Flow Rate, Fuel-Rich Acetylene/Oxygen Flames, Combustion Science and Technology, N. G. Glumac, 122, (1997) 383.

Two-Dimensional Temperature Field Measurements Using a Molecular Filter Based Technique, G. S. Elliott, N. G. Glumac, C. D. Carter, and A. S. Nejad, Combustion Science and Technology, 125, (1997), 351.

High Rate Synthesis of Nanophase Materials, Y. Chen, N. Glumac, B. H. Kear, and G. Skandan, Nanostructured Materials, 9, (1997) 101-104.

Diamond Thin Film Deposition in Low Pressure Flames, D. G. Goodwin, N. G. Glumac, and H. S. Shin, Proceedings of the Combustion Institute, 26 (1996).

Diagnostics and Modeling of Strained Fuel-Rich Acetylene/Oxygen Flames used for Diamond Deposition, N. G. Glumac and D. G. Goodwin, Combustion and Flame, 105, (1996) 321.

Diamond Growth by Methane Injection into Hydrogen/Oxygen Flames, N. G. Glumac, E. J. Corat and D. G. Goodwin, Diamond and Related Materials, 2, (1993) 169-173.

Large Area Diamond Film Growth in a Low Pressure Flame, N. G. Glumac and D. G. Goodwin, Materials Letters, 18, (1993) 119-122.

Diamond Growth in a Novel Low Pressure Flame, N. G. Glumac and D. G. Goodwin, Applied Physics Letters, 60, (1992) 2695.

Diamond Synthesis in a Low Pressure Flat Flame, N. G. Glumac and D. G. Goodwin, Thin Solid Films, 212, (1992) 122-126.